

Characterisation of Thermally Aged Stainless Steels for Power Generation Applications

By Oscar Smith

Rebecca Higginson and Simon Hogg, Loughborough University Sarah Spindler, Mike Spindler and Jacob Knight, EDF Energy

Content

- Introduction
- Background
- Experimental Method
- Initial Condition of Material
- Results
- Conclusion

Background

- Austenitic stainless steels can be subjected to high temperatures for extended periods of time in service. This can cause the formation of secondary phases.
- Sigma Phase and M₂₃C₆ can degrade the mechanical properties and corrosion resistance of the material.
- Regions of ferrite transform fastest.
- Previous work has relied heavily on TEM investigations to detect and characterise these phases.
- Work is needed to understand how the microstructure of these metals develop during time in service.

Tseng, C. C. Shen, Y et al, "Fracture and the formation of sigma phase, M₂₃C₆, and austenite from delta-ferrite in an AISI 304L stainless steel" *Metallurgical and Materials Transactions A, Vol* 25, 1994

Experimental Method

• Material: Cast 304L Stainless Steel:

Fe	Cr	Ni	С
70.0%	18.7%	8.86%	0.0136%

- Thermal aging of stainless steel components at 750°C and 650°C up to 10,000Hrs.
- Characterisation of the microstructure:
 - Optical Microscopy
 - Scanning Electron Microscopy Electron Backscatter Diffraction (EBSD)
 - Transmission Electron Microscopy Samples prepared using Focus lon Beam (FIB)

Initial Condition Of Material

Loughborough

Optical Image

Ferrite	Austenite	Zero Solutions
2.03%	97.55%	0.42%

Initial Condition of Material

Loughborough

Optical Image

Equivalent: Cr 20.23% Ni 9.67%

Thermocalc

Investigation of Aged Material

Loughborough

750°C 200Hrs

2.5µm

Phase Map

Band

= 2 μm; BC; Step=0.0356 μm; Grid288x227

2.5µm

2.5µm

C Kα1_2

2.5µm

Sample prep for TEM using FIB

Loughborough

TEM Results

1/rim

Updated EBSD CCD Detector (Close couple device)

650°C 500Hrs

Phase Color 11

^{25μm} Fe Lα1,2

IPF Z Color 11

^{25μm} Cr Lα1,2

25µm

Phase Color 10

^{25μm} Ni Lα1,2

25µm

^{25μm} C Kα1_2

25µm

EBSD Data from "Symmetry" Detector University

750°C 5000Hrs

Results Achieved Using:

- Sensitivity Binning Mode
- Refined Accuracy Indexing Mode
- Centre Band Detection Mode

EDS for 750°C 5000Hrs Sample

Loughborough

Processed Data Using Aztec Crystal

- AZtecCrystal "Classify" tool
- Plotted maps showing the band slope, and the KAM value (using a 7x7 array), and then trained the system to separate the carbides and ferrite.
- Protected the sigma phase, zero solutions and the austenite.

δ

 $M_{23}C_{6}$

σ

Conclusions

• Long term thermal aging has created more complex transformations than previously observed.

- Carbides were observed to form within the delta ferrite and not just at the interface.
- New grains of ferrite have also formed within the original delta ferrite.

Any Questions?